Cotorsion Theories Cogenerated by $\aleph_1$-free Abelian Groups
نویسندگان
چکیده
منابع مشابه
Cotorsion theories cogenerated by א1-free abelian groups
Given an א1-free abelian group G we characterize the class CG of all torsion abelian groups T satisfying Ext(G, T ) = 0 assuming the special continuum hypothesis CH. Moreover, in Gödel’s constructable universe we prove that this characterizes CG for arbitrary torsion-free abelian G. It follows that there exist some ugly א1-free abelian groups.
متن کاملCotorsion Theories and Splitters
Let R be a subring of the rationals. We want to investigate self splitting R-modules G that is ExtR(G,G) = 0 holds and follow Schultz [22] to call such modules splitters. Free modules and torsion-free cotorsion modules are classical examples for splitters. Are there others? Answering an open problem by Schultz [22] we will show that there are more splitters, in fact we are able to prescribe the...
متن کاملStrong theories of ordered abelian groups
We consider strong expansions of the theory of ordered abelian groups. We show that the assumption of strength has a multitude of desirable consequences for the structure of definable sets in such theories, in particular as relates to definable infinite discrete sets. We also provide a range of examples of strong expansions of ordered abelian groups which demonstrate the great variety of such t...
متن کاملUndecidable theories of valuated abelian groups
© Mémoires de la S. M. F., 1984, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2002
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181070044